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J.S. Meredith 

Lawrence Livermore National Laboratory, Livermore, California 94550 

In this paper, we first survey a variety of approaches to material interface 
reconstruction and their applicability to visualization, and we investigate 
the details of the current reconstruction algorithm in the VisIt scientific 
analysis and visualization tool.  We then provide a novel implementation 
of the original VisIt algorithm that makes use of a wide range of the finite 
element zoo during reconstruction.  This approach results in dramatic 
improvements in quality and performance without sacrificing the strengths 
of the VisIt algorithm as it relates to visualization.  (U) 

Introduction 

Background 
Computer simulations of physical 

phenomena have a need to support materials, 
i.e. discrete regions of space with different 
physical properties.  For example, a simulation 
of tidal waves needs to partition space into 
water and air, and a simulation of an 
automobile accident must model glass, metal, 
and rubber. In these simulations, space is often 
divided into a computational mesh of cells.  
However, to maintain accuracy, the material 
regions will not necessarily conform to the 
cells of the mesh.  (See Fig 1.)  Sometimes, 
this is because the mesh is static and the 
materials move; sometimes it is because the 
mesh cannot deform to handle the twisting and 
bending of materials without tangling; and 
sometimes it is simply because the materials 
must be modeled at a higher resolution than the mesh to maintain accuracy.  The result is 
that very often, a single cell may be mixed: the cell is composed of pieces of two or more 
materials.  Cells that contain only one material are called clean. 

 

Fig. 1.  Material boundaries will not in 
general conform to the cells of the mesh. 
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Since the materials can now be of greater resolution than the mesh, the question of 
how to keep track of this material information in mixed cells becomes a problem. The 
typical method has been to store in each cell just the 
material volume fractions (VFs), or the percentage of 
the cell filled with each material. Unfortunately, the 
shape of the interface is not typically stored.  (See Fig. 
2.)  A difficulty in visualizing results from these 
simulations thus involves determining what the 
material interfaces looked like based purely on what 
volume fractions are stored for each material in a cell.    
Methods of reconstruction and tracking of these 
mixed material interfaces have been researched since 
the 1960s.  They are important for visualization, but 
they are also important for physical simulations 
themselves since an inaccurate reconstruction can give 
inaccurate results. 

To help explore what it means to have a good 
reconstruction, let us imagine a very simple example: 
a 3x3 cell mesh where exactly the bottom half of the 
mesh is water and the top half is air. (See Fig. 3)  This 
means the top three cells are completely air, the 
bottom three cells are completely water, and the 
middle three cells contain half water and half air. 
These three middle cells are mixed, and it is the 

reconstruction method that must determine which portion of each of these cells is air and 
which is water. In this simple example, it makes both intuitive and physically meaningful 
sense that the center cell is “correctly”  reconstructed by assigning water to the bottom 
half of the cell and air to the top half of the cell.  Other examples, such as the one of 
Figures 1 and 2 are not quite as obvious; “correctness”  should be probably be defined not 
only in terms of accurately recreating an interface which covers the exactly quantity of a 
mixed cell, but that it puts the materials in a natural position within the cell. 

Survey of Previous Methods 
One of the first methods for material interface reconstruction (MIR) is a method that 

uses tracking particles to define the interface (Amsden, 1966).  Noh and Woodward 
(1976) created the simple line interface calculation (SLIC), which determines the material 
interface using these volume fractions.  SLIC is a piecewise constant method which aligns 
the material interface with one of the major coordinate axes. Also originating at this time 
were similar piecewise constant/stair-stepped methods such as the volume-of-fluid (VOF) 
method (Nichols and Hirt, 1975).  An improvement to these methods came with 
piecewise linear interface calculations (PLIC) such as the one from Youngs (1992). 
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Fig 3: Example volume fractions for 
water (left) and air (right) 
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Fig. 2.  Volume fractions for the 
boundaries shown in Fig. 1. 
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When performing reconstruction on a cell, most 
of these methods examine a window around the cell 
for the contextual information needed to determine 
the shape of the interface in that cell.  To continue 
with our earlier example, see Fig. 4, where a cell of 
interest is outlined in red, and a window around it is 
outlined in blue. 

Examining the PLIC Algorithm 
Since the PLIC algorithm is commonly used, we 

will examine it in more detail.    First, select a 
material to reconstruct.  This step by itself is often a 

source of error because a “correct”  reconstruction requires, 
for reasons that will become clear, that we follow the 
materials in order from the outside in.  In this example we 
choose the green material, and its volume fractions for the 
cell of interest and surrounding window are shown in Fig. 5. 

Next, calculate the slope of the interface using a window 
around the cell of interest (for example, using the gradient of 
volume fractions), and then calculate the intercept of that 
interface line such that it intersects the exact volume fraction 
in the cell of interest.  Fig. 5 also shows this slope and 
intersection position.  Once this is done, fill in the chosen 
material as in Fig. 6. 

This leaves empty space in the cell, and the process is 
repeated for each material using the unallocated space in that 
cell.  Finally, when there is only one material remaining, its 
volume fraction by definition must be exactly the same as the 
remaining amount of empty space, so we simply fill the 
remaining space with that remaining material. 

This process is repeated for all 
cells: choose a material, find the 
slope, intersect the cell, fill with 

that material, and repeat for all materials.  When done, our 
example looks a lot like Fig. 7.   As a final note, be aware that 
this algorithm is not limited to structured 2D grids. 

Material Interface Reconstruction for Visualization 
One must note that the methods shown above, are 

concerned not just with the interface reconstruction, but also 
with the ability to track materials using this reconstruction. In other words, these 
algorithms are not designed to look correct, but to perform correctly within a CFD or 
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Fig. 4.  A cell of interest (red) and its 
window of surrounding cells. 
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Fig. 5.  Slope and 
intersection for PLIC 
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Fig. 6.  End of first 
material pass in PLIC. 

 

Fig. 7. Final result of PLIC. 
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hydrodynamics code. This makes visualization of material interfaces using these methods 
unappealing.  Their primary drawback is that the interface is never designed to be 
continuous across cells.  In two dimensions, visualization would clearly show the stair 
stepping and discontinuities inherent in these algorithms, and Fig. 7 shows this clearly.   
In three dimensions, a lack of continuity means a lack of connectivity, and makes most 
geometric algorithms on the reconstructed mesh unnaturally difficult.  In fact, it is 
impossible using only a single linear interface to obtain an interface that is guaranteed to 
be both accurate and continuous across cell boundaries, because it can only approximate 
what should in many cases be a curved line. 

One approach that guarantees continuity is called the Isosurface method.  It generates 
a continuous variable based on volume fractions, and finds interfaces where a material 
volume fractions is exactly equal to the value 0.5.  Using this 
method, it is possible to force many visualization codes that 
do not natively understand materials to do a plot of these 
material interfaces.  However, this method has some 
drawbacks.  First, since it does not understand natively what a 
material is, it cannot respect clean cells, and it will often draw 
interfaces through them.  Second, it will leave “gaps”  where 
three or materials approach each other.  Third, it cannot 
guarantee that it will reconstruct the correct amount of 
material in a cell as specified by the volume fractions used as 
input to the method.  And fourth, it is a surface based 
approach and cannot be used to perform reconstruction 
before doing further visualization operations like slicing.  
Some of these consequences of these will be shown later. 

The VisIt scientific visualization code of Lawrence 
Livermore National Laboratory uses a different method to 
reconstruct and visualize mixed material meshes.  The basic 
premise is similar to the isosurface algorithm, except that it 
natively understands what a material is, and it finds surfaces 
where the material volume fractions are equal to each other. 

The outline of this algorithm is the following.  First, 
collect the volume fractions for all materials in the cell of  
interest and the window around it (see Fig. 8).  Second, create 
a linearly interpolated variable over the mesh using the 
volume fractions for each material.   This is done in this case 
by averaging the volume fractions of each material in all four 
cells surrounding a mesh node to that node (see Fig. 9), then 
repeating for all nodes in the cell of interest for all materials 
(see Fig. 10).  

Next, using an interpolation function (such as bilinear 
interpolation), evaluate the function for each material at every 
point within the cell.  Where the value for the blue material is 
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Fig. 8.  All volume fractions 
for all materials. 
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Fig. 10.  Final nodal VFs 
for the cell of interest. 
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Fig. 9.  Averaging cell-
centered VFs to the nodes. 
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greater, it is determined that the point contains our blue 
material, and where green is greater, it is determined that the 
point contains our green material.   

For this example, the blue material has the greatest value in 
the lower-right portion of the cell, and the green material has 
the greatest value in the upper-left portion of the cell, leading 
to results in the cell of interest that look like Fig. 11.  Note that 
for a linear interface within a cell, the evaluation need not 
actually happen at every point in the cell; the actual 
implementation is much more efficient for linear interfaces 
because it only calculates the intersections along the cell edges. 

This example shows only two materials, but the extension to three materials is 
actually very straightforward in that there was no assumption in the mathematics about 
the number of materials.  Where the real difference lies is in the comment in the previous 
paragraph concerning an efficient implementation – it actually calculates intersections 
between pairs of materials.  To accomplish this, it handles multiple materials by visiting 
them in stages, and the output of each stage will be the input to the next.  For example, 

examine Fig. 12 where we 
show the full reconstruction 
process one stage at a time.  In 
Fig. 12a we have the square 
input cell, and are visiting the 
green material, and we have 
trivially determined that of all 
visited materials and the new 
material, the green one is 

greatest at all four corners and thus the output from the first stage is at Fig. 12b.  In Fig. 
12b, we decided that when visiting the blue material, the blue material was greater than 
the green material at the bottom two corners, and as output from this stage we get Fig. 
12c.  Now we have two intermediate cells as input to this third stage where we examine 
the red material.  We decide for the blue input cell that red is now greatest along the right 
edge, and we decide for the green input cell that red is also greatest along the right edge.  
This gives us as final output Fig. 12d.  Note that while we visited the materials in some 
order, unlike the PLIC algorithm the particular order we 
choose will have almost no impact on the final result. 

This approach has another distinct advantage, which is 
that it is guaranteed to generate continuous interfaces from 
one mixed cell to the next (see Fig. 13); the values obtained at 
a node by averaging the neighboring four cell are the same no 
matter which cell of the four we are considering.  This means 
the interpolant generates the same values at any edge no 
matter which of the two cells along the edge we are 
considering.  Note that there is what appears to be a 
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Fig. 11.  Final result in the 
cell of interest. 

 

Fig. 13.  Final result of the 
visualization reconstruction. 

(a) (b) (c) (d)  

Fig. 12.  The input cell is at (a).  Intermediate stages in the 
reconstruction at (b) and (c).  Final output at (d).  
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discontinuity in Fig. 13, but in fact this is merely showing the ability for this method to 
respect clean cells, unlike the Isosurface method.  Specifically, this need not break 
connectivity; simply reconstruct this clean cell as if it were mixed but before completing 
reconstruction on that cell, force all output geometry to be the correct (clean) material.  
This generates reconstructed geometry with good connectivity that still respects clean 
cells. 

In addition, this approach, like the isosurface approach, generates boundaries which 
look subjectively “good” – the water material in some mixed cell will be near the water in 
neighboring cells, and the air material in a mixed cell will be near the air in neighboring 
cells.  In general, this technique will not be exactly accurate; as mentioned above, with so 
few degrees of freedom it may be impossible to ensure accuracy if it ensures continuity 
anyway.  However, it produces results more suitable for scientific visualization. 

Reconstruction for Visualization in Three Dimensions 
Like the PLIC algorithm, the VisIt algorithm intuitively extends to three dimensions.  

However, like the isosurface algorithm, the earliest implementations of this algorithm in 
three dimensions had the disadvantage of reconstructing only surface geometry instead of 
a pure volumetric reconstruction; this produced some of the same aberrant results as the 
isosurface algorithm.  More recently, a volumetric method was created to solve these 
problems, and it is this latest iteration that has been the most successful in terms of 
generating the best results for visualization. 

However, the cost of a full volumetric reconstruction is expensive in terms of code 
size and complexity, memory usage, output cell and polygon count, and execution time.  
The reasons for this are many.  For one, there are potentially many material in a single 
mesh, and unlike the isosurface algorithm, the materials cannot be reconstructed in 
isolation from the other materials – this forces the algorithm to keep more in memory at a 
time. 

In addition, a surface reconstruction can output a single polygon per material per zone 
mixed, but a volumetric construction in general cannot output a single cell per material 
per mixed zone.  Imagine slicing a cube in half at an angle such that the face between the 
two halves is a pentagon or hexagon.  Since the primitive cell types have only three or 
four sided faces, each half must by definition be composed of more than one cell.  To 
phrase this differently, the difficulty is that a volumetric reconstruction almost 
necessitates working with arbitrary polyhedra.  This is not particularly difficult in two 
dimensions, but to remain feasible in three dimensions, a different approach must be 
taken. 

A common approach in spatial algorithms like this relies on splitting cells into 
tetrahedra, because of the simplicity of the tetrahedron and the small number of ways one 
can split a tetrahedron.  In other words, step one in a volumetric reconstruction is to take 
the input mesh and convert every cell into tetrahedra, then perform reconstruction on the 
tetrahedral mesh. 
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There wind up being two nontrivial ways to split a tetrahedron:  the first generates a 
tetrahedron and a wedge as output; the second generates two wedges as output.  Recall, 
however, that as we visit other materials in the cell we must take these output shapes and 
feed them back as input.  Since we cannot operate on a wedge, we must convert that 
wedge into three new tetrahedra, so a single cut on an a tetrahedron will wind up with 
four or six – not two – shapes as input to the next stage. 

Furthermore, simply breaking up a nontrivial mesh into tetrahedra without breaking 
connectivity is not an easy task and can be counterproductive.  One major problem with 
tetrahedralization is that if one is not very careful about how they tetrahedralize every one 
of the input cells, then they might break the connectivity of the mesh before even 
beginning the material interface reconstruction.  Specifically, there are 26=64 different 
ways to tetrahedralize any individual hexahedron.  If for any cell, you choose a 
tetrahedralization that does not correctly match with its neighbors, you have broken 
connectivity before reconstruction, and no intelligent choice of reconstruction algorithm 
is going to fix it. 

This problem is shown in more 
detail in Fig. 14.  The two cells at 
the top of the figure share a 
quadrilateral face.  The bottom left 
and bottom right images show these 
two cells under two different sets of 
tetrahedralizations.  The bottom left 
image shows a poor matching of 
tetrahedralizations.  What happened 
in this case is that when the hex was 
split into tets, the quadrilateral was 
thus split into triangles (i.e. the 
faces of the tets), and the two cells 
did not agree on how to split that 
quadrilateral.  This causes an 
immediate break in face 

connectivity, disrupting most further visualization operations.  The image on the bottom 
right, however, shows a good matching of tetrahedralizations, because both pairs of 
triangles of that matching face have all their nodes the same, and thus connectivity is not 
broken. 

The most obvious solution appears at first glance to be global: pick a 
tetrahedralization for one cell, then ensure that for your neighbors you pick one that 
matches.  Luckily, there is a local solution you can guarantee is correct without having to 
look at your neighbors, under the commonplace assumption that the node indexing is 
unique.  It is as simple as this: always split any quadrilateral face along the diagonal 
starting at the lowest numbered node. For a hexahedron, for example, we pick from one 
of two possible splits for each of the six quadrilateral faces, giving us exactly one of the 
64 possible tetrahedralizations.  Since the node numbers for any given quadrilateral face 

 

Fig. 14.   Top: two hexahedral cells with an adjoining 
face.  Bottom left: a tetrahedralization for these two 
cells that results in a break in connectivity.  Bottom 
right: a good tetrahedralization that leaves connectivity 
intact. 
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are going to match no matter which of the two 
cells share that face, both cells will locally make 
the same decision and ensure good connectivity 
remains.  See Fig. 15 for an example. 

While we now have a local solution that we 
can implement, there remain some significant 
hurdles to doing a full volumetric reconstruction 
in three dimensions using tetrahedralization.  The 
first problem is that the logic described above to determine the appropriate 
tetrahedralization is not trivial to implement, either in terms of code complexity or final 
speed.  A more inherent problem is that even the common hexahedral cell will be split 
into a minimum of at least five, and usually six, tetrahedra.  Thus, interface reconstruction 
now must operate on a data set with almost six times the number of cells as the original, 
with all the associated downsides such as memory usage, time to do the reconstruction 
calculation, and the number of polygons in the final surface. 

One other downside to doing 
tetrahedralization before the 
reconstruction is a visual artifact I will 
call interpolation imprinting.  Fig. 16 
explains the situation in two dimensions 
for simplicity.  The square on the left of 
the figure shows a 2D cell that will have 
reconstruction performed.  Since 
according to our visualization setup the 
blue material is greatest in the lower-left 
corner and the green material is greatest 
at the other corners, we know that our 
reconstruction algorithm finds edge 
material intersections and in this case will 
find a blue/green intersection along the 
left edge and along the bottom edge. 

However, we first need to perform a tetrahedralization, and the 2D analogue would be 
to split this square into triangles.  The top path of Fig 16 shows one way it might happen, 
and the bottom shows another way, and both of these are equally likely to occur based on 
our node-index scheme.  Recall that we are only doing edge material intersections, and 
note that on the bottom path we have created a new edge – the diagonal – along which to 
interpolate material values and along which we must by definition have another 
intersection.  This upper-right value in the original square cell was not used in calculating 
the original edge intersections and in general cannot create an intersection which causes a 
smooth surface in the final reconstruction; the bent red line in the bottom path is an 
example of what often results. 
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Fig. 15.  Example indexing for a shared 
face its implicit subdivision. 

 

Fig. 16.  Interpolation imprinting: an arbitrary 
choice of cell splitting before reconstruction can 
cause unintended wobbles in the reconstructed 
interface. 
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The Zoo Based Algorithm 
Can we create an algorithm that will perform a volumetric reconstruction while 

avoiding both the need to work with arbitrary polyhedra and the need to split the mesh 
into tetrahedra?  Can we use it to avoid the interpolation imprinting artifact entirely?  And 
furthermore, we would like one further ideal: is it possible to require that we split cells 
into the geometric minimum number of output shapes?  For example, if we take a cube 
and slice it in half along its axis, can we create an algorithm that will be guaranteed to 
return exactly two hexahedra as output shapes?  The answer to all these is yes. 

First in Two Dimensions 
Let us return to the two-dimensional world, assume we have created an algorithm 

which gives us the ideal results just described, and examine how this works.  We make 
the common assumption that 2D cells are only triangles or quadrilaterals. 

In fact, we will start at the simplest possibility geometrically as the input to a stage in 
our new reconstruction algorithm: triangles.  Fig. 17 shows the full range of ways in 
which we may split a triangle (which, by symmetry, is only two different ways).  The first 
is the trivial split: a triangle is the input shape, we found no intersections, and have the 
full input triangle as the output.  The second is the nontrivial split: a triangle is the input 
shape, one (or symmetrically two) nodes were of a 
different material, and the output is one 
quadrilateral and one triangle.  For this second case, 
suppose we now want to visit a third material in a 
subsequent stage in our reconstruction.  At this 
point, we had better understand how to handle 
quadrilaterals as input to our reconstruction 
algorithm, or else we have reached an impasse. 

So let us examine what might happen if we take 
quadrilaterals as input to a reconstruction stage.  
Fig. 18 shows all the possibilities here as well, 
which by symmetry is only four different ways.  
The first is the trivial split, with a quad as input 
and a quad as output.  The last is the on-axis 
split, with a quad as input and with two squished 
quads as output.  The other two are the difficult 
ones, as one has a pentagon as output and the 
other has a hexagon. 

The difficulty here may be obvious: we might 
have a five- or six-sided polygon as input to our 
next stage, and splitting those again might create 
up to nine-sided polygons as input to the next 
stage, and so on.  One solution is to handle arbitrary polygons.  The other is to split those 
shapes into triangles and deal with those.  This is, in fact, simply a rephrasing of the 

 

Fig. 17.  All clipping cases for 
triangles. 

 

  Fig. 18. All clipping cases for quads. 
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reasons in three dimensions that led us to tetrahedralization – we know what to do with 
triangles/tetrahedra, and we don’ t want the complexity of arbitrary polygons/polyhedra.  
More specifically, if we want to avoid the arbitrary polygons, we need to have closure 
over the input and output shape types, and the easiest way to do that is by having the 
output of any splitting operation be triangles. 

However, one fact might be more clear now that we have investigated the problem in 
some detail in the two-dimensional setting: we don’ t have to split the pentagon and 
hexagon into triangles.  In fact, our hexagon can be handled by splitting it into two 
quadrilaterals, and our pentagon can be handled by 
splitting it into one triangle and one quadrilateral.  By 
doing this, we now no longer have up to 6 total output 
shapes by splitting one input quad, we only have up to 
4.  And we have simultaneously limited the output 
shape types to only triangles and quadrilaterals, which 
we know how to handle.  In other words, we have cut 
down on the quantity of cells we need to handle while 
maintaining closure of the input/output shape types. 

There is one open issue before claiming the two-
dimensional case is solved: there are three different 
ways to split a hexagon into two quadrilaterals, and five 
different ways to split a pentagon into a quad and a 
triangle – which of these ways should we subdivide?  While any method of making this 
decision would suffice, one way turns out to be better than the others because it is 
unambiguous: if you have to split the corner off a quadrilateral, force another split along 
the parallel diagonal of that split.  This is shown in Fig. 19. 

Thus, the combination of the splitting cases in Figures 17 and 19, when symmetry is 
added, result in a complete closed solution for two dimensional clipping without resorting 
to arbitrary polygons or triangulating all input cells. 

The Zoo Extension into Three Dimensions 
Let us now move back to three dimensions.  However, 

instead of showing the full solution, I will show two 
examples.  First, we have one ideal hexahedron splitting 
shown in Fig. 20, where the split is cuts the hex into two 
new squished hexes. 

We have another ideal hexahedron splitting shown in 
Fig. 21.  This one cuts one edge off the hexahedron, and 
the shape cut off with the edge is a wedge, or triangular 
prism.  This is exactly one of the shapes in the finite 
element zoo.  However, note that when we make this cut, 
the top and bottom face of the original hex are now cut 
into one triangle and one pentagon.  This is a real 

 

Fig. 19.  Clipping cases for quads 
with triangle/quad closure. 

hex hex  

Fig. 20. One ideal clip for a hex. 

wedge hex wedge  

Fig. 21. Another ideal clip. 
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difficulty, because while we would like every time 
we split an input shape to result in only two output 
shapes, it is not possible here because none of the 
shapes in our finite element zoo (see Fig. 22) has a 
pentagon as a face.  Thus we must create a total of at 
least three shapes as the output for Fig. 21.  By 
making full use of the cells at our disposal in the 
finite element zoo, we have done exactly that as 
shown in Fig. 21.  Thus in this case we have also 
created the geometric minimum number of output 
shapes without using arbitrary polyhedra. 

The fact that all of the 3D shapes in the finite 
element zoo have only triangles and quadrilateral as 
faces is actually critical to the 3D solution.  Apart 
from the simplicity of explanation, this was another 
reason to demonstrate the concept in two 

dimensions: we simply apply the solution for 2D polygons to the faces of three 
dimensional cells.  For example, this is what we did to the top and bottom faces of Fig. 21 
– we cut along the corner, and effected another split along the parallel diagonal.  This 
guarantees that we will never have anything but a triangle or quad as face for an output 
shape. 

This also highlights the danger of ambiguity in which way to split the pentagons or 
hexagons that might result in 2D: we are performing the same operation on the faces of 
3D cells, and these faces must be split the same way no matter which of the two cells that 
share a face we are operating on. 

With the 2D solution now applied to the faces of 3D cells, can we always split an 
input cell cleanly into output shapes from the zoo?  In other words, it was a necessary 
condition, but was it sufficient to guarantee closure in the zoo? 

The answer is actually “No”, but it turns out not to matter.  In some cases, you cannot 
group the newly created faces into meaningful output shapes without adding extra edges 
along some of these faces.  This is, of course, not allowed, because we have no way to 
guarantee that our neighboring cell will add the same edges.  Instead, we add a new point 
on the interior of the output shape and create tetrahedra and pyramids from this new point 
to the triangles and quads we have guaranteed as output shapes.  This sounds like many 
more shapes than we would like, but remember the following facts.  First, the tets and 
pyramids we output are part of the zoo, so we have thus ensured closure.  Second, it is a 
last resort reserved for hard cases only; most of the cases can be solved with fewer 
shapes.  Third, remember that we are comparing the number of output shapes against the 
method where we tetrahedralize the cell before attempting to cut it. 

In short, applying the lessons from 2D results in the geometric minimum number of 
output shapes and always results in a complete closed solution for clipping 3D cells 
without resorting to arbitrary polyhedra. 

Tetrahedron Pyramid

HexahedronWedge  

Fig. 22.  The three-dimensional shapes 
in the finite element zoo. 
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Qualitative Results 
In Fig. 23, we see the value of a 

continuous interface.  The image on the left 
was generated with a PLIC algorithm, and the 
discontinuities not only look bad but would 
cause difficulties when performing other 
visualization or analysis operations on this 
reconstruction.  The image on the right was generated with the continuous VisIt algorithm 
and has none of those problems. 

In Fig. 24, the left image was generated 
with the isosurface algorithm.  Notice that 
where three materials meet, a large void has 
appeared.  The VisIt algorithm ensures there 
are no gaps between materials. 

In Fig. 25, we see one advantage of a 
volumetric reconstruction.  In the left image, 
we needed to slice the volume fractions before 
we could perform reconstruction, because it 
requires a volumetric algorithm to be able to 
reconstruct before slicing.  The reason for the 
poor material boundaries is that slicing volume 
fractions is not physically meaningful; the 
materials are not evenly distributed throughout 
the cell.  The image on the right was generated 
with the VisIt algorithm performing 
reconstruction before the slice. 

In Figs. 26 and 27, we see the advantages 
of the zoo-based approach to clipping cells.  
The left image in Fig. 26 split every mixed cell 
before reconstruction just as a 
tetrahedralization approach would.  In fact, 
this is an optimistic picture because many 
tetrahedralization approaches would also split 
every clean cell.  However, the zoo-based 
approach has no need to split clean cells 
except when necessary to guarantee 
connectivity, and even when splitting mixed 
cells does it as few times as possible.  In Fig. 
27, we see how using fewer unnecessary splits 
in the zoo-based approach results in fewer 
interpolation artifacts. 

 

Fig. 23. PLIC vs. Zoo-based 

  

Fig. 24. Isosurface vs. Zoo-based 

 

Fig. 25. Surface vs Volumetric 
Reconstruction 

 

Fig. 26.  Tetrahedralizing vs. Zoo-based 
subdivision 

 

Fig. 27. Tetrahedralizing vs. Zoo-based 
interpolation 
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Quantitative Results 
 

In Figures 28 - 30, we compare the performance of the predecessor reconstruction 
algorithm in VisIt (orange), which was a volumetric tetrahedralization method, to the new 
algorithm in VisIt (blue), which is the finite element zoo based approach described in this 
paper.  One important point to note is that the tetrahedralization algorithm was highly 
optimized over a period of two years, and among other improvements it is able to avoid 
tetrahedralization on all but the mixed cells, and it can avoid re-tetrahedralizing split tets 
if they are not used as input to another stage in the same cell. 

These examples are all real-world problems.  Example 1 has 512 domains, 20 million 
cells, 30 materials, and was run in parallel on 64 processors.  Example 2 has 300,000 
cells, 17 materials, and was run on 1 processor.  Example 3 has 420,000 cells, 30 
materials, and 3 domains, and was run on 1 processor. 

In Fig. 28, we see that on average, execution time has decreased by about 3x.  In Fig. 
29 (the scales are normalized to the old algorithm), we see that the output cell count has 
also decreased by a factor of about 3x.  In Fig. 30, we see that the number of output 
triangles has decreased by a factor of just over 2x in each case. 

Conclusions 
We have first provided some background information on material interface 

reconstruction and how it has been implemented in the past.  In addition, we have 
discussed in detail the previous algorithm used by the VisIt visualization code and 
explained its strengths and weaknesses. 

Finally, we presented a new algorithm that greatly improves upon the previous ones in 
terms of realism, quality, and speed.  The resulting algorithm are runs several times faster 
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Fig. 28. Execution time. 
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Fig. 29.  Output cell count. 
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Fig. 30. Output triangle count. 
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than the previous volumetric reconstruction in VisIt, uses one third the memory, avoids 
floating point numeric hashing entirely, always retains perfect logical connectivity, cuts 
the volumetric cell count down by a factor of three and thus speeds up subsequent 
operations on the reconstructed dataset by the same factor, results in about half the 
polygons, improving rendering speed by a factor of two and resulting in smoother, more 
accurate output with fewer interpolation artifacts. 
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